Chlorofluorocarbon (CFC), any of several organic compounds composed of carbon, fluorine, and chlorine. When CFCs also contain hydrogen in place of one or more chlorines, they are called hydrochlorofluorocarbons, or HCFCs. CFCs are also called Freons, a trademark of the E.I. du Pont de Nemours & Company in Wilmington, Del. CFCs were originally developed as refrigerants during the 1930s. Some of these compounds, especially trichlorofluoromethane (CFC-11) and dichlorodifluoromethane
(CFC-12), found use as aerosol-spray propellants, solvents, and
foam-blowing agents. They are well suited for these and other
applications because they are nontoxic and nonflammable and can be
readily converted from a liquid to a gas and vice versa.
Their
commercial and industrial value notwithstanding, CFCs were eventually
discovered to pose a serious environmental threat. Studies, especially
those of American chemists F. Sherwood Rowland and Mario Molina and Dutch chemist Paul Crutzen, indicated that CFCs, once released into the atmosphere, accumulate in the stratosphere, where they contribute to the depletion of the ozone layer. Stratospheric ozone shields life on Earth from the harmful effects of the Sun’s ultraviolet radiation; even a relatively small decrease in the stratospheric ozone concentration can result in an increased incidence of skin cancer in humans and genetic damage in many organisms. Ultraviolet radiation in the stratosphere causes the CFC molecules to dissociate, producing chlorine atoms and radicals (i.e., chlorodifluoromethyl radical; free radicals are species that contain one or more unpaired electrons).
The
chlorine atoms then react with ozone, initiating a process whereby a
single chlorine atom can cause the conversion of thousands of ozone
molecules to oxygen.
Hydrochlorofluorocarbons |
Because of a growing concern over stratospheric ozone depletion
and its attendant dangers, a ban was imposed on the use of CFCs in
aerosol-spray dispensers in the late 1970s by the United States, Canada,
and the Scandinavian countries. In 1990, 93 nations agreed, as part of
the Montreal Protocol
(established 1987), to end production of ozone-depleting chemicals by
the end of the 20th century. By 1992 the list of participating countries
had grown to 140, and the timetable for ending production of CFCs
advanced to 1996. This goal has largely been met.
Hydrochlorofluorocarbons (HCFCs) pose less of a
risk than CFCs because they decompose more readily in the lower
atmosphere; nevertheless, they too degrade the ozone layer and are scheduled to be phased out by 2030.